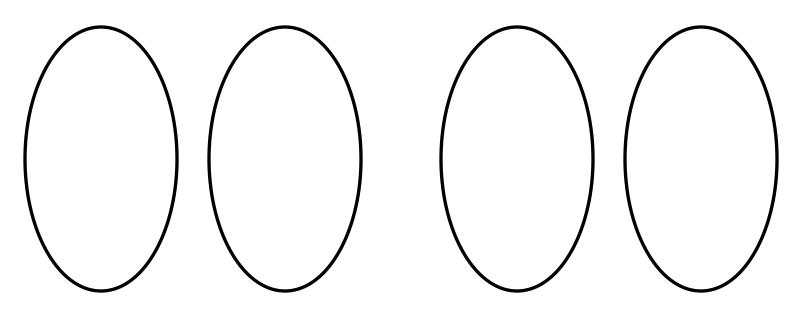
### 10.1 Inverse Functions


By: Cindy Alder

#### Objectives:

- Decide whether a function is one-to-one and, if it is, find its inverse.
- Use the horizontal line test to determine whether a function is one-to-one.
- Find the equation of the inverse of a function.
- Graph  $f^{-1}$  given the graph of f.

#### **Review of Functions:**

 A function is a relation in which, for each value of the first component of the ordered pairs, there is exactly one value of the second component.



#### **One-to-One and Inverse Functions**

#### **One-to-One Function**

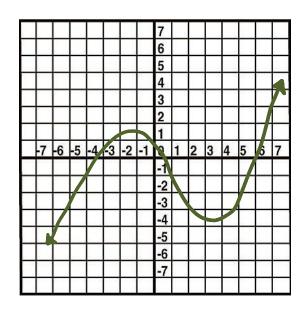
In a one-to-one function, each x-value corresponds to only one y-value, and each y-value corresponds to only one x-value.

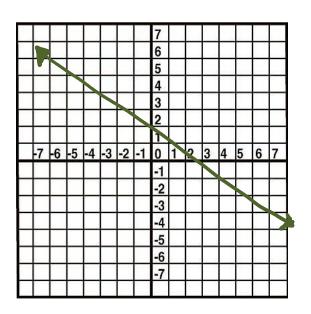
#### **Inverse of a Function**

The inverse of a one-to-one function f, written  $f^{-1}$ , is the set of all ordered pairs of the form (y, x), where (x, y) belongs to f. Since the inverse is formed by interchanging x and y, the domain of f becomes the range of  $f^{-1}$  and the range of f becomes the domain of  $f^{-1}$ .

# Finding Inverses of One-to-One Functions

Decide whether each function is one-to-one. If it is, find the inverse.


• 
$$F = \{(2,5), (3,6), (4,8), (8,7)\}$$


• 
$$G = \{(0,3), (-1,2), (1,3)\}$$

#### Using the Horizontal Line Test

#### **Horizontal Line Test**

A function is one-to-one if every horizontal line intersects the graph of the function at most once.

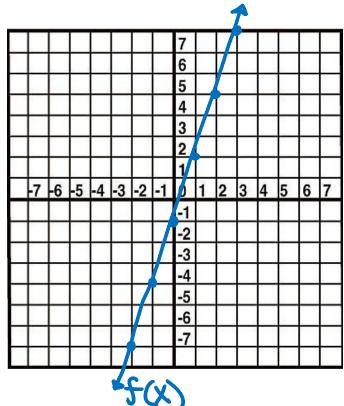




- For a one-to-one function f defined by an equation y = f(x), find the defining equation of the inverse as follows
  - Step 1: Interchange x and y.
  - Step 2: Solve for y.
  - Step 3: Replace y with  $f^{-1}(x)$ .

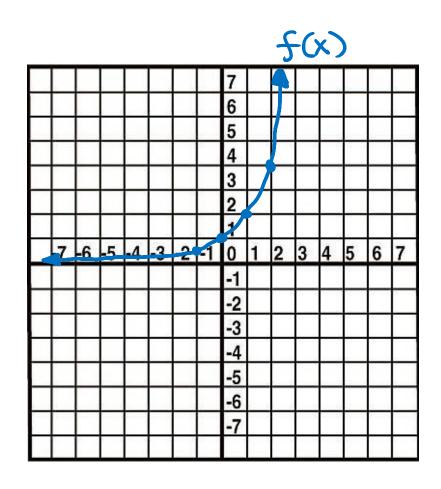
$$f(x)=2x+5$$

$$f(x) = 3x - 4$$


$$f(x) = (x-3)^2$$

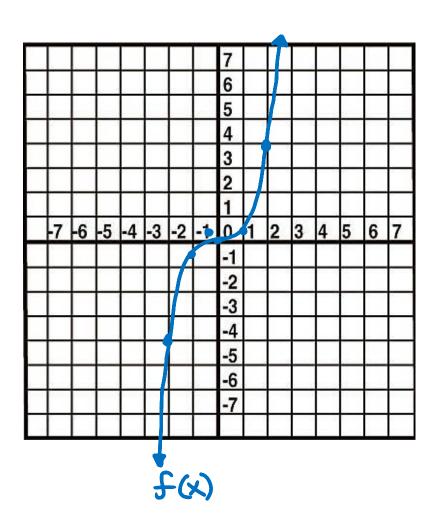
$$f(x) = \sqrt{x-3} \; , \qquad x \ge 3$$

$$f(x) = x^3 + 1$$


### **Graphing the Inverse**

- Find several ordered pairs that belong to f.
- Interchange x and y to obtain ordered pairs that belong to  $f^{-1}$ .
- Plot those points, and sketch the graph of  $f^{-1}$  through them.




### **Graphing the Inverse**

Graph the inverse of the function f (shown in blue).



### **Graphing the Inverse**

Graph the inverse of the function f (shown in blue).



# Finding the Value of a Function and It's Inverse

• The function  $f(x) = 3^x$  is a one-to-one function. Find f(4) and  $f^{-1}(81)$ .

# Finding the Value of a Function and It's Inverse

• The function  $f(x) = \left(\frac{1}{2}\right)^x$  is a one-to-one function. Find f(-3) and  $f^{-1}(8)$ .